Comparing Differential Tissue Harmonis Imaging with Tissue harmonic and Fundamental Gray Scale Imaging of the Liver
نویسنده
چکیده
Objective. The purpose of this study was to compare fundamental gray scale sonography, tissue harmonic imaging (THI), and differential tissue harmonic imaging (DTHI) for depicting normal and abnormal livers. Methods. The in vitro lateral resolution of DTHI, THI, and sonography was assessed in a phantom. Sagittal and transverse images of right and left hepatic lobes of 5 volunteers and 20 patients and images of 27 liver lesions were also acquired. Three independent blinded readers scored all randomized images for noise, detail resolution, image quality, and margin (for lesions) on a 7-point scale. Next, images from the same location obtained with all 3 modes were compared blindly side by side and rated by all readers. Contrast-to-noise ratios were calculated for the lesions, and the depth of penetration (centimeters) was determined for all images. Results. In vitro, the lateral resolution of DTHI was significantly better than fundamental sonography (P = .009) and showed a trend toward significance versus THI (P = .06). In the far field, DTHI performed better than both modes (P < .04). In vivo, 450 images were scored, and for all parameters, DTHI and THI did better than sonography (P < .002). Differential tissue harmonic imaging scored significantly higher than THI with regard to detail resolution and image quality (P < .001). The average increase in penetration with THI and DTHI was around 0.6 cm relative to sonography (P < .0001). The contrast-to-noise ratio for DTHI showed a trend toward significance versus THI (P = .06). Side-by-side comparisons rated DTHI better than THI and sonography in 54% of the cases (P < .007). Conclusions. Tissue harmonic imaging and DTHI do better than fundamental sonography for hepatic imaging, with DTHI being rated the best of the 3 techniques.
منابع مشابه
Comparing differential tissue harmonic imaging with tissue harmonic and fundamental gray scale imaging of the liver.
OBJECTIVE The purpose of this study was to compare fundamental gray scale sonography, tissue harmonic imaging (THI), and differential tissue harmonic imaging (DTHI) for depicting normal and abnormal livers. METHODS The in vitro lateral resolution of DTHI, THI, and sonography was assessed in a phantom. Sagittal and transverse images of right and left hepatic lobes of 5 volunteers and 20 patien...
متن کاملDevelopment of a Liver Phantom Based on Computed Tomography Images for Dosimetric Purpose
Introduction: The present study was conducted with the aim of designing a liver phantom for dosimetry. To benchmark the results obtained by the developed liver phantom, another method was applied for the dosimetry of a real liver tissue using imaging. Materials and Methods: For the purpose of the study, a real liver tissue was converted into a phantom based on thegram-molecular weight of the co...
متن کاملI-41: Imaging Strategy for Diagnosis of Adnexal Masses Including US,CT Scan and MRI
Adnexal masses are spectrum of diseases from benign non neoplastic and neoplastic masses to malignant neoplasms. Endovaginal ultrasonography (US) is the fisrt and invaluable modality for assessment of adnexal masses because it is available and has a high negative predictive value. Important morphologic features are solid (vascularized) tissue, vascular and thick septations, and papillary projec...
متن کاملComparison of transcranial brain tissue perfusion images between ultraharmonic, second harmonic, and power harmonic imaging.
BACKGROUND AND PURPOSE To clarify optimal brain tissue perfusion images visualized by transcranial ultrasound harmonic imaging, we compared gray-scale integrated backscatter (IBS) images of new ultraharmonic imaging (UHI) and conventional second harmonic imaging (SHI) with power harmonic imaging (PHI) (harmonic B-mode with harmonic power Doppler images) in 10 patients with and 4 without a tempo...
متن کاملEvaluation of the gray level in CBCT systems and its relationship with HU in CT Scanners
Introduction: Cone-beam CT (CBCT) is an imaging system which offers three-dimensional (3D), multiplanar images and has many advantages over computed tomography (CT) including shorter acquisition times for the resolution desired in dentistry, lower radiation dose to the patient, reasonable price and higher spatial resolution but CBCT scanners are unable to display actual Hounsf...
متن کامل